This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Synthesis and Antibacterial Activities of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophenes

Dejiang Lia; Heqing Fub

^a College of Chemistry and Life Science, China Three Gorges University, Yichang, P. R. China ^b Research Institute of Chemical Engineering, South China University of Technology, Guangzhou, P. R. China

To cite this Article Li, Dejiang and Fu, Heqing(2008) 'The Synthesis and Antibacterial Activities of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-*b*]-[1,3,4] thiadiazole-6-yl]thiophenes', Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 9, 2229 — 2236

To link to this Article: DOI: 10.1080/10426500701852794 URL: http://dx.doi.org/10.1080/10426500701852794

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:2229-2236, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500701852794

The Synthesis and Antibacterial Activities of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophenes

Dejiang Li¹ and Heqing Fu²

¹College of Chemistry and Life Science, China Three Gorges University, Yichang, P. R. China

²Research Institute of Chemical Engineering, South China University of Technology, Guangzhou, P. R. China

2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophenes 2 were synthesized in high yields by cyclization of 3-aryl 4-amino-5-mercapto-1,2,4-triazole 1 with thiophene-2,5-dicarboxylic acid in the presence of POCl₃ and tetrabutylammonium iodide as catalyst. The preliminary antibacterial tests showed that most of them were effective against S. aureus, E. coli and B. subtilis. Compounds 2b, 2c, 2d, 2m, 2n, and 2o exhibited promising antibacterial activity. Compounds 2 were screened for their fungicidal activities against Gibberella zeae, Cerospora beticola sacc, Physalospora piricola and Pellicularia sasakii. Compounds 2b, 2c, and 2d showed a high degree of inhibition against Cerospora beticola sacc.

Keywords 2,5-Bis[(3-aryl)-1,2,4-triazolo-[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophenes; antibacterial activities; synthesis

INTRODUCTION

Bis[1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-4-yl]alkanes were reported to possess antibacterial property¹ and bis[1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-3-ylmethoxy] phenylenes possess anticancer activity against a panel of 60 cell lines derived from seven cancer types namely, lung, colon, melanoma, renal, ovarian, CNS and leukemia.² 2,6-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]pyridines endowed with good fungicidal activities against *Cerospora beticola sacc* have been reported from our laboratory.³ Prompted by these

Received October 2, 2007; accepted December 3, 2007.

We gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province Education Committee of China (Project No. D200660001).

Address correspondence to Dejiang Li, College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, P. R. China. E-mail: lidejiang999@yahoo.com.cn

observations and in continuation of our search for bioactive molecules, we designed a facile one-pot method to prepare a series of novel 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene by cyclization of 3-aryl-4-amino-5-mercapto-1,2,4-triazoles with thiophene-2,5-dicarboxylic acid. The synthesis, characterization and the results of antibacterial activities screening studies of the newly synthesized compounds are presented in this paper.

RESULTS AND DISCUSSION

The synthesis of 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophenes **2** were accomplished in one-step with good yields by condensing 3-aryl-4-amino-5-mercapto-1,2,4-triazoles **1** with thiophene-2,5-dicarboxylic acid in the presence of POCl₃ and tetrabuty-lammonium iodide as catalyst (Scheme 1) (Table 1). Because of the poor solubility of **1** and thiophene 2,5-dicarboxylic acid in POCl₃, the yield of **2** is very low. For example, the yield of **2a** was 41%. However, where the tetrabutylammonium iodide as phase transfer catalyst were utilized and the mixture was first stirred for 6 h at 55–60°C, then refluxed for 10–14 h at 115–120°C. For example, **2a** was obtained in 87% yield.

HOOC S COOH + Ar SH
$$\frac{(n-C_4H_9)_4N^{-1}}{POCl_3}$$
 Ar N-N S S N-N A

SCHEME 1

The IR spectral data of compounds **2** showed bands at 1615–1645 cm⁻¹, 1235–1260 cm⁻¹, and 700–720 cm⁻¹ due to C=N, N–N=C and C–S–C, respectively. The ¹H NMR spectra of **2** exhibited multiple signals in the δ 8.40–7.60 range accounting for hydrogen of aryl group. The ¹³C NMR spectra displayed the characteristic signals of all carbons. With compound **2a** as an example, it exhibited multiple signals in the δ 8.39–8.37, 8.09–7.78 ranges accounting for the 12 hydrogens of phenyl and thiophene group. The EI-MS for compounds **2** exhibited molecular ion peaks. With compound **2a** as an example, it showed a strong molecular ion peak M⁺ with m/z 484 and 33% relative abundance.

Compounds **2** were screened for their antibacterial activities against $E.\ coli, S.\ aureus$, and $B.\ subtilis$ employing the cup-plate method at the concentration of 100 μ g/mL in the nutrient agar. The preliminary results indicated that most of compounds were effective against $S.\ aureus$, $E.\ coli\ and\ B.\ subtilis$ (see Table II).

TABLE I Preparation of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene 2 from 3-Aryl-4-amino-5-mercapto-1,2,-4-triazoles 1

Entry	Ar	Condition	Yield (%)a	M.p. (°C)
2a	Ph	115–120°C/13 h	87	>300
2b	2-Cl—Ph	115–120°C/11 h	72	>300
2c	3-Cl─Ph	115–120°C/12 h	85	>300
2d	4-Cl—Ph	115–120°C/12 h	76	>300
2e	2-CH ₃ —Ph	115–120°C/14 h	64	>300
2f	3-CH ₃ —Ph	115–120°C/14 h	67	>300
2g	4-CH ₃ —Ph	115–120°C/13 h	70	>300
2h	3-Br − Ph	115–120°C/12 h	68	>300
2i	4-Br─Ph	115–120°C/13 h	70	>300
2 j	2-I—Ph	115–120°C/12 h	65	>300
2k	3-I Ph	115-120°C/11h	71	>300
21	4-I—Ph	115–120°C/12 h	77	>300
2m	4-OCH ₃ −Ph	115–120°C/13 h	80	>300
2n	4-Pyridyl	115–120°C/10 h	71	>300
2 o	3-Pyridyl	115–120°C/10 h	65	>300

^aPurified yields of **2a-2o** based on thiophene-2,5-dicarboxylic acid.

Compounds **2** were screened for their fungicidal activities against Gibberella zeae, *Cerospora beticola sacc, Physalospora piricola* and *Pellicularia sasakii.* Among all the compounds tested, **2b, 2c** and **2d** showed a high degree of inhibition against *Cerospora beticola sacc* (see Table III).

TABLE II The Antibacterial Activities of Compounds 2 (100 mg/L, Relative Inhibition %)

Compd.	S .aureus	E. coli	B. subtilis
2a	52	47	78
2 b	94	75	95
2c	92	87	96
2d	94	91	97
2e	34	42	46
3f	68	40	75
2g	56	25	31
2h	54	43	70
2i	75	52	81
2j	36	32	52
2k	35	46	57
21	41	32	36
2m	90	68	85
2n	95	97	94
2o	93	95	96

Entry	Gibberella zeae	Cerospora beticola sacc	Physalospora piricola	Pellicularia sasakii
	zeae	ociicoia sacc	piricola	- Gasanti
2a	30	75	62	40
2 b	56	95	82	81
2c	63	96	79	90
2d	74	97	81	82
2e	30	79	68	32
2f	35	76	62	42
2g	39	71	56	25
2h	41	76	55	43
2i	35	85	43	39
2 j	31	87	50	43
2k	31	84	51	30

TABLE III The Fungicidal Activities of 2 (50 mg/L, Relative Inhibition %)

CONCLUSION

2m

2n

In conclusion, tetrabutylammonium iodide is an efficient catalyst for the synthesis of 2,5-bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene by reaction of 3-aryl-4-amino-5-mercapto-1, 2, 4-triazoles with thiophene-2,5-dicarboxylic acid. Among all the compounds tested, **2b**, **2c**, **2d**, **2n** and **2o** showed were effective against *S. aureus*, *E. coli*, and *B. subtilis*. Hence, **2b**, **2c**, **2d**, **2m**, **2n**, and **2o** stand to be a promising antibacterial agent. Among all the compounds tested, **2b**, **2c**, and **2d** showed a high degree of inhibition against *Cerospora beticola sacc*.

EXPERIMENTAL

Melting points were determined on an X_4 melting point apparatus and were uncorrected. The IR spectra were recorded on a Nicolet Nexus 470 FT-IR spectrophotometer using KBr discs in the range 4000–4400 cm⁻¹. ¹H NMR spectra were recorded on a Varian Mercury-Plus (400 MHz) spectrometer in CF₃COOD or pyridine- d_5 solution using TMS as an internal reference, and ¹³C NMR spectra were recorded on a Varian Mercury-Plus (100 MHz) spectrometer in CF₃COOD or pyridine- d_5 solution using TMS as an internal reference. MS spectra were recorded on a Finnigan Trace GC-MS spectrometer. Elemental Analyses were taken on a Perkin-Elemer-2400-CHN Elemental Analysis Instrument.

The General Procedure for the Preparation of 3-Aryl-4amino-5-mercapto-1,2,4-triazoles from Aromatic Carboxylic Acids by Four Steps According to the Literature³⁻⁵

The General Procedure for the Preparation of 2,5-Bis[(3-aryl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene 2

A mixture of compound 3-aryl-4-amino-5-mercapto-1,2,4-triazole (2.2 mmol), thiophene-2,5-dicarboxylic acid (0.182 g, 1.0 mmol), the phase transfer catalyst tetrabutylammonium iodide (0.185 g, 0.5 mmol), and $POCl_3$ (7 mL) was stirred for 6 h at 55–60°C, and then refluxed for 10–14 h at 115–120°C. Excess $POCl_3$ was removed under reduced pressure. The concentrated mass was cooled, poured into crushed ice, and neutralized with potassium carbonate. The separated solid was filtered, washed with water, ethanol, and then dried. The crude material was recrystallized (ethanol-pyridine), giving the pure products **2a-o**.

2,5-Bis[(3-phenyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene (2a)

Yellow powder, ^1H NMR (CF_3COOD, 400 MHz): δ 8.39–8.37 (m, 4H, Ar—H), 8.09–7.78 (m, 8H, Ar—H); ^{13}C NMR (100 MHz, ppm): 164.1, 159.3, 152.5, 147.4, 145.6, 138.1, 128.6, 127.4, 122.3; IR (KBr, cm $^{-1}$): 1630, 1244, 712; MS-EI (m/z): 484 (M $^+$, 33%), 327 (30%), 309 (15%), 152 (100%), 103 (29%). Elemental anal. calcd. for $C_{22}H_{12}N_8S_3$: C, 54.53; H, 2.50; N, 23.12. Found: C, 54.71; H, 2.52; N, 23.01.

2,5-Bis[(3-o-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2b)

Pale yellow powder, 1H NMR (CF₃COOD, 400 MHz): δ 8.38–8.34 (m, 4H, Ar–H), 8.07–7.66 (m, 6H, Ar–H); 13 C NMR (100 MHz, ppm): 160.6, 157.8, 147.9, 146.3, 142.7, 138.2, 132.9, 128.7, 128.5, 126.7, 125.1; IR (KBr, cm $^{-1}$): 1621, 1234, 708. MS-EI (m/z): 556 (M+4, 3%), 554 (M+2, 14%), 552 (M+, 22%), 361 (15%), 343 (14%), 152 (100%), 102 (16%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3Cl_2$: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.89; H, 1.76; N, 20.08.

2,5-Bis[(3-m-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2c)

Pale yellow powder, 1H NMR (CF₃COOD, 400 MHz): δ 8.33–8.27 (m, 4H, Ar–H), 8.18–8.12 (m, 3H, Ar–H), 7.85–7.78 (m, 3H, Ar–H); 13 C NMR (100 MHz, ppm): 162.1, 158.3, 156.4, 153.3, 148.7, 139.1, 126.7, 135.1, 129.3, 128.9, 124.5; IR (KBr, cm $^{-1}$): 1620, 1231, 711. MS-EI (*m/z*): 556 (M+4, 4%), 554 (M+2, 10%), 552 (M+, 19%), 361 (12%), 343 (21%), 152 (100%), 102 (4%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3Cl_2$: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.91; H, 1.85; N, 20.11.

2,5-Bis[(3-p-chlorophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2d)

Yellow powder, 1H NMR (CF₃COOD, 400 MHz): δ 8.38–8.35 (m, 4H, Ar–H), 8.10 (s, 2H, Ar–H), 7.80–7.77 (m, 4H, Ar–H); ^{13}C NMR (100 MHz, ppm): 159.2, 157.3, 155.1, 148.7, 145.6, 136.1, 134.5, 129.7, 127.5; IR (KBr, cm $^{-1}$): 1631, 1246, 715. MS-EI (m/z): 556 (M+4, 4%), 554 (M+2, 21%), 552 (M+, 25%), 361 (18%), 343 (25%), 152 (100%), 102 (5%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3Cl_2$: C, 47.74; H, 1.82; N, 20.24. Found: C, 47.60; H, 1.79; N, 20.38.

2,5-Bis[(3-o-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2e)

Yellow powder, $^1\text{H NMR}$ (CF₃COOD, 400 MHz): δ 8.37–8.34 (m, 2H, ArH), 8.19–8.15 (m, 3H, Ar–H), 7.62–7.57 (m, 5H, Ar–H), 2.58 (s, 6H, 2CH₃); $^{13}\text{C NMR}$ (100 MHz, ppm): 156.1, 153.3, 149.1, 142.7, 140.5, 138.7, 135.4, 129.1, 128.2, 126.4, 123.2, 20.79 (CH₃); IR (KBr, cm⁻¹): 1642, 1251, 718. MS-EI (m/z): 512 (M⁺, 25%), 341 (12%), 323 (51%), 152 (100%). Elemental anal. calcd. for $C_{24}H_{16}N_8S_3$: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.05; H, 3.18; N, 21.98.

2,5-Bis[(3-m-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2f)

Pale yellow powder, 1H NMR (CF₃COOD, 400 MHz): δ 8.41–8.38 (m, 3H, ArH), 8.21–8.16 (m, 2H, Ar–H), 7.79–7.74 (m, 5H, Ar–H), 2.57 (s, 6H, 2CH₃); $^{13}\mathrm{C}$ NMR (100 MHz, ppm): 153.7, 150.5, 148.7, 145.3, 140.2, 137.6, 128.1, 126.3, 123.2, 21.5(CH₃); IR (KBr, cm⁻¹): 1628, 1236, 714. MS-EI (*m/z*): 512 (M⁺, 39%), 341 (28%), 323 (40%), 152 (100%). Elemental anal. calcd. for C₂₄H₁₆N₈S₃: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.41; H, 3.20; N, 21.71.

2,5-Bis[(3-p-methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2g)

Yellow powder, $^1\mathrm{H}$ NMR (CF_3COOD, 400 MHz): δ 8.30–8.27 (m, 4H, ArH), 8.09 (s, 2H, Ar–H), 7.65–7.62 (m, 4H, Ar–H), 2.60 (s, 6H, 2CH_3); $^{13}\mathrm{C}$ NMR (100 MHz, ppm): 148.7, 145.4, 142.2, 140.7, 138.2,136.9, 133.1, 129.4, 126.5, 19.8(CH_3); IR (KBr, cm $^{-1}$): 1640, 1243, 717. MS-EI (*m/z*): 512 (M $^+$, 48%), 341 (41%), 323 (50%), 152 (100%). Elemental anal. calcd. for $\mathrm{C}_{24}\mathrm{H}_{16}\mathrm{N}_8\mathrm{S}_3$: C, 56.23; H, 3.14; N, 21.86. Found: C, 56.36; H, 3.01; N, 21.69.

2,5-Bis[(3-m-bromophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2h)

Brown powder, 1 H NMR (CF₃COOD, 400 MHz): δ 8.32–8.28 (m, 3H, Ar–H), 8.09–8.05 (m, 3H, Ar–H), 7.71–7.68 (m, 4H, Ar–H); 13 C NMR

 $\begin{array}{l} (100~\rm MHz,~ppm):~160.2,~157.3,~153.1,~147.6,~145.1,~140.2,~131.2,~130.8,~128.7,~125.5,~123.3;~IR~(KBr,~cm^{-1}):~1619,~1252,~704.~MS-EI~(\emph{m/z}):~644~(M+4,~5\%),~642~(M+2,~5\%),~640~(M^+,~6\%),~405~(19\%),~387~(42\%),~181~(63),~152~(100\%).~Elemental~anal.~calcd.~for~C_{22}H_{10}N_8S_3Br_2:~C,~41.13;~H,~1.57;~N,~17.44.~Found:~C,~41.02;~H,~1.63;~N,~17.59. \end{array}$

2,5-Bis[(3-p-bromophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2i)

Brown powder, $^1{\rm H}$ NMR (CF₃COOD, 400 MHz): δ 8.30–8.27 (m, 4H, Ar–H), 8.09 (s, 2H, Ar–H), 7.65–7.62 (m, 4H, Ar–H); $^{13}{\rm C}$ NMR (100 MHz, ppm): 159.4, 156.5, 153.1, 147.2, 142.5, 137.1, 132.2, 128.9, 122.1; IR (KBr, cm $^{-1}$): 1621, 1230, 708. MS-EI (m/z): 644 (M+4, 7%), 642 (M+2, 6%), 640 (M+, 7%), 405 (16%), 387 (53%), 181 (72), 152 (100%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3Br_2$: C, 41.13; H, 1.57; N, 17.44. Found: C, 41.29; H, 1.49; N, 17.30.

2,5-Bis[(3-o-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2j)

Yellow powder, $^1{\rm H}$ NMR (Pyridine- d_5 , 400 MHz): δ 8.31–8.28 (m, 3H, Ar–H), 8.24–8.21 (m, 2H, Ar–H), 7.53–7.49 (m, 5H, Ar–H); $^{13}{\rm C}$ NMR (100 MHz, ppm):161.3, 157.2, 154.1, 150.2, 147.8, 142.6, 139.9, 130.9, 127.7, 98.6; IR (KBr, cm $^{-1}$): 1638, 1241, 716. MS-EI (m/z): 736 (M $^+$, 29%), 453 (3%), 435 (11%), 152 (60%), 102 (100%). Elemental anal. calcd. for $C_{22}H_{10}N_8S_3I_2$: C, 35.88; H, 1.37; N, 15.22. Found: C, 36.05; H, 1.30; N, 15.03.

2,5-Bis[(3-m-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2k)

Yellow powder, 1H NMR (Pyridine- d_5 , 400 MHz): δ 8.29–8.26 (m, 2H, Ar—H), 8.16–8.12 (m, 5H, Ar—H), 7.67–7.62 (m, 3H, Ar—H); $^{13}\mathrm{C}$ NMR (100 MHz, ppm):159.4, 155.1, 150.2, 147.6, 145.3, 143.2, 140.9, 138.7, 136.7, 127.4, 96.8; IR (KBr, cm $^{-1}$): 1627, 1239, 713. MS-EI (*m/z*): 736 (M $^+$, 31%), 453 (7%), 435 (10%), 152 (48%), 102 (100%). Elemental anal. calcd. for $\mathrm{C}_{22}\mathrm{H}_{10}\mathrm{N}_8\mathrm{S}_3\mathrm{I}_2$: C, 35.88; H, 1.37; N, 15.22. Found: C, 36.03; H, 1.42; N, 15.10.

2,5-Bis[(3-p-iodophenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2l)

Yellow powder, $^1\mathrm{H}$ NMR (Pyridine- d_5 , 400 MHz): δ 8.35–8.31 (m, 4H, Ar—H), 8.07 (s, 2H, Ar—H), 7.61–7.58 (m, 4H, Ar—H); $^{13}\mathrm{C}$ NMR (100 MHz, ppm):157.6, 155.3, 153.1, 149.2, 147.5, 139.1, 129.4, 97.2; IR (KBr, cm $^{-1}$): 1641, 1254, 717. MS-EI (*m/z*): 736 (M $^+$, 36%), 453 (4%), 435 (12%), 152 (59%), 102 (100%). Elemental anal. calcd. for $\mathrm{C}_{22}\mathrm{H}_{10}\mathrm{N}_8\mathrm{S}_3\mathrm{I}_2$: C, 35.88; H, 1.37; N, 15.22. Found: C, 35.71; H, 1.33; N, 15.38.

2,5-Bis[(3-p-methoxyhenyl)-1,2,4-triazolo[3,4-b]-[1,3,4] thiadiazole-6-yl]thiophene (2m)

Pale yellow powder, 1 H NMR (CF₃COOD, 400 MHz): δ 8.32–8.29 (m, 4H, Ar–H), 8.07 (s, 2H, Ar–H), 7.51–7.49 (m, 4H, Ar–H), 3.97 (s, 6H, 2OCH₃); 13 C NMR (100 MHz, ppm):162.1, 160.7, 157.7, 148.9, 145.1, 129.1, 126.5, 113.2, 58.7(OCH₃); IR (KBr, cm⁻¹): 1630, 1241, 706. MS-EI (m/z): 544 (M^{+} , 42%), 357 (6%), 339 (8%), 152 (100%). Elemental anal. calcd. for $C_{24}H_{16}N_{8}O_{3}S_{2}$: C, 52.93; H, 2.96; N, 20.57. Found: C, 51.80; H, 2.89; N, 20.71.

2,5-Bis[(3-(3-4/-pyridyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene (2n)

Yellow powder, 1H NMR (CF₃COOD, 400 MHz): δ 8.27–8.24 (m, 4H, Ar–H), 7.78–7.72 (m, 6H, Ar–H); ^{13}C NMR (100 MHz, ppm): 164.3, 160.2, 159.1, 148.0, 143.2, 135.7, 123.9; IR (KBr, cm $^{-1}$): 1621, 1236, 703. MS-EI (m/z): 486 (M $^+$, 21%), 328 (8%), 310 (25%), 152 (100%). Elemental anal. calcd. for $C_{20}H_{10}N_{10}S_3$: C, 49.37; H, 2.07; N, 28.79. Found: C, 49.50; H, 2.01; N, 28.62.

2,5-Bis[(3-(3-3/-pyridyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole-6-yl]thiophene (2n)

Yellow powder, ^1H NMR (CF $_3\text{COOD}, 400$ MHz): δ 8.22–8.19 (m, 3H, Ar–H), 8.15–8.12 (m, 3H, Ar–H), 7.68–7.64 (m, 4H, Ar–H); ^{13}C NMR (100 MHz, ppm): 161.2, 158.1, 156.9, 153.2, 150.1, 149.3, 146.7, 143.2, 124.8; IR (KBr, cm $^{-1}$): 1630, 1229, 707. MS-EI (m/z): 486 (M $^+$, 16%), 328 (5%), 310 (30%), 152 (100%). Elemental anal. calcd. for $C_{20}H_{10}N_{10}S_3$: C, 49.37; H, 2.07; N, 28.79. Found: C, 49.21; H, 2.12; N, 28.92.

REFERENCES

- [1] B. S. Holla, R. Gonsalves, and S. Shenoy, Il Farmco, 53, 574 (1998).
- [2] B. S. Holla, K. N. Poojary, B. S. Rao, and M. K. Shivananda, Eur. J. Med. Chem., 37, 511 (2002).
- [3] D. J. Li, D. Q. Long, and H. Q. Fu, Phosphorus, Sulfur, Silicon, Relat. Elem., 181, 2079 (2006).
- [4] D. J. Li, D. Q. Long, and H. Q. Fu, Phosphorus, Sulfur, Silicon, Relat. Elem., 181, 519 (2006).
- [5] D. J. Li, D. Q. Long, and H. Q. Fu, Synth. Commun., 35, 2495 (2005).